Homocysteine metabolism in ZDF (type 2) diabetic rats.

نویسندگان

  • Enoka P Wijekoon
  • Beatrice Hall
  • Shobhitha Ratnam
  • Margaret E Brosnan
  • Steven H Zeisel
  • John T Brosnan
چکیده

Mild hyperhomocysteinemia is a risk factor for many diseases, including cardiovascular disease. We determined the effects of insulin resistance and of type 2 diabetes on homocysteine (Hcy) metabolism using Zucker diabetic fatty rats (ZDF/Gmi fa/fa and ZDF/Gmi fa/?). Plasma total Hcy was reduced in ZDF fa/fa rats by 24% in the pre-diabetic insulin-resistant stage, while in the frank diabetic stage there was a 59% reduction. Hepatic activities of several enzymes that play a role in the removal of Hcy:cystathionine beta-synthase (CBS), cystathionine gamma-lyase, and betaine:Hcy methyltransferase (BHMT) were increased as was methionine adenosyltransferase. CBS and BHMT mRNA levels and the hepatic level of S-adenosylmethionine were also increased in the ZDF fa/fa rats. Studies with primary hepatocytes showed that Hcy export and the transsulfuration flux in cells from ZDF fa/fa rats were particularly sensitive to betaine. Interestingly, liver betaine concentration was found to be significantly lower in the ZDf fa/fa rats at both 5 and 11 weeks. These results emphasize the importance of betaine metabolism in determining plasma Hcy levels in type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-specific alterations of methyl group metabolism with DNA hypermethylation in the Zucker (type 2) diabetic fatty rat.

BACKGROUND Altered methyl group and homocysteine metabolism were tissue-specific, persistent, and preceded hepatic DNA hypomethylation in type 1 diabetic rats. Similar metabolic perturbations have been shown in the Zucker (type 2) diabetic fatty (ZDF) rat in the pre-diabetic and early diabetic stages, but tissue specificity and potential impact on epigenetic marks are unknown, particularly duri...

متن کامل

Prediction of Methionine and Homocysteine levels in Zucker diabetic fatty (ZDF) rats as a T2DM animal model after consumption of a Methionine-rich diet

Background Although alterations in the methionine metabolism cycle (MMC) have been associated with vascular complications of diabetes, there have not been consistent results about the levels of methionine and homocysteine in type 2 diabetes mellitus (T2DM). The aim of the current study was to predict changes in plasma methionine and homocysteine concentrations after simulated consumption of met...

متن کامل

Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol and fatty acid oxidation in lean and Zucker diabetic fatty rats.

We examined fatty acid transporters, transport, and metabolism in hearts and red and white muscles of lean and insulin-resistant (week 6) and type 2 diabetic (week 24) Zucker diabetic fatty (ZDF) rats. Cardiac fatty acid transport was similar in lean and ZDF hearts at week 6 but was reduced at week 24 (-40%) in lean but not ZDF hearts. Red muscle of ZDF rats exhibited an early susceptibility to...

متن کامل

Onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function after ischemia in the isolated perfused heart.

The aim of this study was to determine whether the transition from insulin resistance to hyperglycemia in a model of type 2 diabetes leads to intrinsic changes in the myocardium that increase the sensitivity to ischemic injury. Hearts from 6-, 12-, and 24-wk-old lean (Control) and obese Zucker diabetic fatty (ZDF) rats were isolated, perfused, and subjected to 30 min of low-flow ischemia (LFI) ...

متن کامل

Effect of Treadmill Exercise on Interleukin-15 Expression and Glucose Tolerance in Zucker Diabetic Fatty Rats

BACKGROUND Interleukin-15 (IL-15), a well-known myokine, is highly expressed in skeletal muscle and is involved in muscle-fat crosstalk. Recently, a role of skeletal muscle-derived IL-15 in the improvement of glucose homeostasis and insulin sensitivity has been proposed. However, little is known regarding the influence of endurance training on IL-15 expression in type 2 diabetic skeletal muscle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 54 11  شماره 

صفحات  -

تاریخ انتشار 2005